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P-VALUES FOR MULTI-STAGE AND SLCQUELNTIAL TESTS
by
Richard W. Madsen and Kenneth B. Fairbanks
University of Missouri-Columbia and Murray State University

Summary

P-values are commonly given for ordinary single stagc
statistical tests. In this note we give a general method for
calculating p-values for a large class of multi-stage and
sequential tests. We also give some tables of p-values for
multi-stage tests about the parameter of an exponéential dis-

tribution when test plans from MIL-STD-781C are used.

Key words: P-values, multi-stage tests, sequential tests,

exponential distribution.

1. INTRODUCTION
It is quite common for investigators to recport the re- 1

sults of a statistical test by giving a p-value rather than

S ;1 simply stating that the test was (or was not) significant

using an a-level test. However when the statistical test

used is a multi-stage test or a sequential test rather than

a single stage test, p-values are generally not given. It '

is the purpose of this note to give a general method for cal-

culating p-values for a large class of multi-stage and se-




quential tests. We also give some tables of p-values for
multi-stage tests about an exponential parameter using test

plans from MIL-STD-781C.

2. DEFINITION OF P-VALUES

Say that X is a random variable having distribution
function F(x3;0). Let H, denote some statistical hypothe-
sis about F, perhaps a hypothesis about & such as:
Hy: B e 00. In the single sample case a random sample
X

.,X_ is typically chosen from the distribution of

1:K95 -+
X and a test statistic T is calculated. A critical region

n

Ca is chosen so that

sup P[TecC,] = a.

Beeo
Generally Ca will consist of the extreme values of T, per-
haps

C, = {t: t >t }.

In this case we would have Culc Cm2 if a, <a,.

It is at this point that the concept of a p-value may be
introduced. (Note that some authors use the term prob-
value while others use the term significance probability
instead of p-value.) Dudewicz (1876, p.313) defines it
as..."the smallest a for which we would sufely reject if

we observed" T=t. Bickel and Doksum (1977, p.170) and

Bhattacharyya and Johnson (1977, p.175), to name just two




———

T

i

—_— Y

3

others, give similar definitions. However if we try to use
this same definition for éequential lests we run into a
problem, as we shall see.

If we consider a sequential probability ratio test
(SPRT) of a simple null against a simple alternative hy-
pothesis (Wald (1947) or Ghosh (1970)) and if 2, denotes
the value of the test statistic at stage n, then the deci-
sion boundaries, a and b, are determined by the desired
values of ¢ and B. The general proccdure is to observe the

values of Zn'sequentially and to

accept Ho if Zn <b

reject Ho if Zn > a

continue by observing the next value Zn+l otherwise.

(See Figure 1.) The values of a and b can be found approx-

imately by taking

(1) a=2Zn((1-8)/a) , b=2n(B/(1-a)).
- .
g Rejection region
ap— — — e e e — —_— e e e - —
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Figure 1. Graphical Representation of a Sequential Test.




Given a sample path as shown in Figure 1 it becomes obvi-
ous that there are difficulties in trying to extend the
definition of p-values to a sequential test. For onec thing,
in order to find "the smallest a for which we would surely
reject” the null hypotheses, we would have to use Equations
(1) changing both a and b. We would then also have to know
the entire sample path and not just the value of the test
statistic at the time at which a decision is made.

If we now return to the simpler single sample test we
can find an alternative characterization of p-values which
lends itself more easily to generalization. Specifically,
"using the distribution of T under Ho’ calculate the proba-
bility P* [the significance probability or p-value] of the
occurrence of the observed value or more extreme values"
(Bhattacharyya and Johnson, 1977, p.180). 1In order to do
this we must determine which values should be considered
more extreme than the observed value. This determination
is generally not difficult in single sample tests but is
more difficult for sequential tests.

Assume that test boundaries a

n’ bn have been given

such that for test statistic Zn’ we

accept H if Z_ < b
o n n
reject ”o if Zn 2a,

continue by observing the next value Zn 1 otherwise.

+




Note that by setting by = ay we can obtain a truncated

N

sequential test or,equivalently, an N-stage (multi-stage)
test. If b, = a; we obtain an ordinary single stage test.
(In some cases the directions of the inequalities for
acceptance and rejection will have to be reversed. This
causes no real problem, however.) Our convention for

determining which values should be considered more extreme

than the observed values will be as follows:

(1) A decision to reject at stage n is more ex-
treme than one 1o reject at stage n+ 1.

(2) A reject decision at stage n with observed
value z, is more extreme than a reject deci-
sion at stage n with observed value z; if
z >z,

(3) A decision to accept at stage n is more ex-
treme than one Lo accept at stage n-1.

(4) An accept decicion at stage n with observed
value 2 is more extreme than an accept deci-
sion at stage n with observed value z; if

z < z
n n

In Figure 2 we show "decision points™" dy,dy,...»dg which

are possible final observed values of a test statistic.

These points are "ordered" in the sense that dl is "more

extreme”" than d, which is "more extreme" than dy, and so

=




e e g

on. With this convention of determining extremeness of
the final values of the test statistic we can find p-valucs.
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Figure 2. Ordered Decision Points

Definition. For a sequential test, truncated or not,

with given test boundaries a ., b, , if the test terminates

at stage k with observed test statistic 2y > then the p-value

is defined by

p-value = Pla test statistic as or more extreme than

z, will be observed when Ho is truel.

If Ho is composite and not simple, then the maximum proba-

bility found when Ho is true will be the p-value.

For simplicity we will assume that Ho.is a simple
hypothesis so that we will not have to be concerned with

finding the maximum probability under ”o' Notationally we
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can define

o =

Plreject H  at stage iIHO true]

P[Continuation at stages 1,2,...i-1 and

Z; > aiIHo]'

P[(blf_Z1 <ay

(z; > ai)luol.

(2) ),

)""(bi—l < Zi-l < a;q

and for z. > a. define
10 — 1
*- 3 .
(3) p¥ = 1>[(.1>1izl < al),...(bi_lf_zi_l< ai_l) R (Zii zlo) IHO]

The p-value for a reject decision at stage i with final
observed value z;, can then be found from
i-1

-value = I da. + p.
)Y 551 3 P;

(Note that the overall level of significance of the test
will be given by o = Zaj with the sum taken over all pos-

sible test stages. Also if a test is curtailed with re-
th

jection at the i stage, the p-value will be bounded since 4
i-1 i

I o, < p-value < I a..)
1 J 1

o e 2

In a similar way we define

() y;=Plhy <2y <ap),a i, <z, <a; 10,07, <b|u ]

1

and for z, < b,
io i

<Z, ;<a, .),(Z,<z, )|H ]
i-1 i io o)

(s) qf- PL(by <2y <a;),..ey(by <2, o

- oey - - N - S




then the p-value for an accept decision at stage i with
final observed value z, is r
io
i-1 N
p-value = 1 - ( I y. + q. ).
j=1 4
Here too, if the test is curtailed at an acceptance boun-
dary bounds for the p-value can be given:
If the p-value is defined in this way, then when Ho
is true the distribution of the p-value will be uniform

over the interval [0, 1]. This same property, of course,

holds in the single sample testing situation.

3. APPLICATION TO MIL-STD-781C TEST DESIGNS

While conceptually it is quite straightforward to use

Equations (2) - (5) to find p-values, the actual calcula-
tions will typically involve numerical integration to find
the @iy Yy etc. We will illustrate the method of finding
p-values by considering just three of the test plans given
in MIL-STD-781C (1977) where the underlying random variable
of interest has an exponential distribution. Bryant and
Schmee (1979) considered the problem of finding confidence
intervals for the parameter 6 of the exponential distribu-
tion when using these test plans. Although the method is
applicable to all test plans, we wil; only consider test
f plans IVC, VIC, and VIIC. We will begin with Plan VIC.

Here the discrimination ratio is 3, so we may consider the

:
E
¥

. . ) i DA e g N« ¢
+ w‘ ’




test of

H:6 =9 =13 Vs H,: & = 6, =1

with ¢ = 8 = .27 (nominal values). If X X are indc-

1> Xgse--
pendent exponential random variables with paramcter 0, then

we will use as test statistic Zn = X1+---+Xn. The decicion
boundaries ag and bn are shown in Table 1. Note that be-

cause of the relative magnitudes of 60 and 61 the accept- T
reject regions will be interchanged, i.e. here Ho will be

accepted if Zn > bn and rejected if 2.n < ag- The necessary

modifications in Equations (2) to (4) are easy to make.

(Reject boundary) (accept boundary)
i a, bi
1 0 2.67
2 ©0.36 4.32 ‘:
3 4.50 4.50

Table 1. Decision Boundaries for Test Plan VIC.

By using numerical integration we were able to find
the values of ui and Y; as well as p-values for various
terminal values in the rejection region. Since the test
plans call for curtailment of the tests when an acceptance
boundary is reached it is~on1y possible to give bounds for
the p-valuc at acceptance but not the actual p-value. The

results for Test Plan VIC are shown in Table 2.
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Test Plan IVC has nominal values of a = 8 = ,2 with
a discrimination ratio of 2 while Test Plan VIIC has nomi-
nal values of a = 8 = ,30 with discrimination ratio 1.5.
The decision boundariecs for these test plans are shown in
Table 3. The p-values {or these test plans are given in

Tables 4 and 5.

4. AN EXAMPLL

The examples we give here follow the examples given
by Bryant and Schmee (1973). Specifically, Neathammer,
Pabst, and Wigginton (1965) describe a production relia-
bility acceptance test of a black box term fér an air-
craft. 1In this problem the risks are to be o = B = ,2
and the discrimination ratio 4 = 2. Consequently test
plan IVC would be appropriate.

Now assume that in an actual test the failures oc-
curred at {(scaled) accumulated test times of 1.0, 1.8,
2.4, 5.0, and 7.8 hours. By looking at the test bounda-
ries shown in Table 3 we see that the test should be con-
tinued at each of the first five stages. Assume that the
sixth failure does not occur prior to the accumulated time.
of 9.74 hours. Then the test will be curtailed with ac-
ceptance at this time. Without knowing the actual time
of the sixth failure it is not possible to give the p-value
exactly, but Jower and upper bhounds on the p-value can be

found from Tablce 4L, Gince the decision occurs at the

R |
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sixth stage we find the bounds to be;
lower bound = .299 < p-value < .334 = upper bound

Next we will consider a test which ends in rejection
rather than acceptance. If in an actual test the failures
occured at accumulated test times of 1.0, 1.8, 2.4, and
3.0 hours, then the test would result in rejection at the
fourth stage. The p-value can be found from Table 4a.

At stage 4 with a final observed value of 3.00, the p-value

can be seen to be .127.
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(a) P-Values at Rejection
Stage 1 ‘ 2 ’
Observed z 0 .10 .20 .30 .36
P-value 0] 001 .002 .005 .007
Stage 3
Observed 2z .40 .80 .80 1.00 1.20 1.40 1.80 1.80
P-value .007 .,007 .008 .010 .013 .017 .021 .027
Stage 3
Observed z 2.00 2.20 2.40 2.60 2,80 3.00 3.20 3.40
P-value .034 .042 .051 .061 .071 .083 .095 .108
Stage 3
Observed z 3.60 3.80 4.00 4.20 4.40  4.50 |
P-value 121 .135 .1u48 .162 .176 .182

(b) P-values at Acceptance

Stage 1 2 3
Lower bound .589 .378 .182
Upper bound  1.000 .589 .378

Table 2. P-values for Test Plan VIC

.
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Plan IV C Plan VIIC

Reject Boundary Accept Boundary Reject Boundary Accept Boundary
a. b. a. b. 3

Stage 1 1 1 1 {

1 0 2.80 1} 3.15
2 .70 4,18 0 4,37
3 2.08 5.58 1.22 5.58
Yy 3.u46 6.96 2.43 6.80
5 4,86 8.34 3.65 6.80
6 6.24 9.74 6.80 6.80
7 7.62 9.74

8 9.74 9.74

Table 3. Decision Boundaries for Test Plans IVC and VIIC.
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(a) P-Values at Rejection

Stage 1 ' 2 )
Observed « a .20 40 .60 .70
P-value 0 .aos .018 .037 .0u9
Stage o 3
Observed z . 80 1.00 1.20 1.40 1.60 1.80 2.00 2.08
P-value .Q49 052 .057 .065 .075 .088 .103 .l09
Stage Y4
1 Observed 7 2.20 2,40 2.60 2.80 3.00 3.20 3.40 3.46
% P-value .110 112 .115 .120 127 .136 .146 .1u49
Stage 5
E Observed z 3.60 3.80 4.00 4,20 4.40 4.60 4,80 4.86
! P-value .149  ,151 .153 ,157 .162 .167 .174 .176
Stage : 6
Observed z 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.24
P-value 76 .177  ,179  .181 .185 .188 .193 .194
= Stage 7
Observed z 6.40 6.60 6.80 7.00 7.20 ?7.40 7.60 7.62
P-value .194  ,195 .1%96 .,198 .200 .202 ,205 .206
Stage . 8
Ef Observed z 8.00 8.40 8.80 9.00 9.20 9.40 9.60 9.74
% P-value . 206 .208 .211 ,213 .216 .218 ,221 .223
{ Table 4(a) P-values at Rejection for Test Plan IVC.

e M e am i L ha a PP SO T N 4 .



(b) P-values at Acceptance

Stage 1l 2 3 y 5 6 7 8 L
Lower bound .73 .580 .u64 .386 .334 .,299 ,253 .223
Upper bound 1.000 .753 .580 .u64 .386 .334 ,299 .253

Table 4(b) P-values at Acceptance for Test Plan IVC.
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(a) P-Values at Rejection

Stage X2 3

Obscerved @ 0 Q .20 40 .60 .80 1.00 1.22
P-value 0 0 .000* ,003 ,008 .017 .030 .0u9
Stage y

Obscrved z 1.40 1.60 1.80 2.00 2.20 2.40 2.43
P~value .050 .05% ,061 .070 .,082 .097 .089

Stage 5

Observed z 2.60 2.80 3.00 3.20 3.40 3.60 3.65
P-value 100 .103 .108 .116 .,125 .136 .1u0

Stape 6

Observed 2 4.00 u.20 4,40 4.60 4.80 5.00 5.20
P-value L1482 .146  .152 .159 .168 .178 .190

Stage 7

Observed 2 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80
P-value .203  .217 .233 .249 .266 .283 .301 .319

Table 5(a) P-values at Rejection for Test Plan VIIC .

(b) P-values at Acceptance

Stage 1 2 3 y 5 6
3 Lower bound .878 .764 .669 .593 U455 .319
Upper bound 1.000 .878 .764 .669 .593 455

- Table 5(b) P-values at Acceptance for Test Plan VIIC .
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